В рамках еженедельного научно-исследовательского семинара по анализу, дифференциальным уравнениям и математической физике РМЦ ЮФУ 20 сентября с 15:30 – 17:00 в ауд. 212 состоится лекция Briceyda B. Delgado «General Solution of the Div-Curl System».
Приглашаются преподаватели, научные сотрудники, аспиранты, студенты и все желающие. e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..
Regional mathematical center of Southern Federal University is pleased to invite you to the Seminar on analysis, differential equations and mathematical physics, which will be held on 20 September 2018 at 15:30 in the room 212.
The title of the lecture: General Solution of the Div-Curl System. Lecturer: Briceyda B. Delgado.
Abstract: In this talk we will give a brief introduction to the non-commutative algebra of quaternions and we present different results of the quaternionic analysis.
We will give a complete solution to the div-curl system, that is we will reconstruct a vector field w from its divergence g0 and curl g [1], where the original data g0 and g are Lp integrable functions in certain bounded domains in R3.
This first order partial differential system governs, for example, static electromagnetic fields. In fact, Maxwell’s equations consist of two simultaneous div-curl systems which describe how electrical and magnetic fields are generated by charges and currents together with their variations.
The construction of the solution rely heavily on the components operators of the classical Teodorescu transform [2], as well as some properties that allow to related them with the theory of harmonic functions. After that, we will construct an explicit inverse to the curl as well as the operator that solves the div-curl system above mentioned.
[1] B. B. Delgado, R. M. Porter, “General solution of the inhomogeneous div– curl system and consequences,” Advances in Applied Clifford Algebras (2017) 3015 – 3037.
[2] K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and n-dimensional Space. Birkhäuser, Basel (2008).
Карякин Михаил Игоревич