В рамках еженедельного научно-исследовательского семинара по анализу, дифференциальным уравнениям и математической физике РМЦ ЮФУ 27 сентября с 15:30 – 17:00 в ауд. 212 состоится лекция Briceyda B. Delgado «Div-Curl System and consequences».
Приглашаются преподаватели, научные сотрудники, аспиранты, студенты и все желающие. e-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..
Regional mathematical center of Southern Federal University is pleased to invite you to the Seminar on analysis, differential equations and mathematical physics, which will be held on 27 September 2018 at 15:30 in the room 212.
The title of the lecture: Div-Curl System and consequences. Lecturer: Briceyda B. Delgado.
Abstract: In this talk we will recall some properties of the non-commutative algebra of quaternions and some fundamental properties of the Teodorescu transform, which was fundamental for the solution of the div-curl system in star-shaped domains.
Now we will give a weak solution to the div-curl system in bounded Lipschitz domain in R3 [2], this allows us to consider more general domains with weaker topological constraints.
Some applications of this solution are to the main Vekua equation and to the static Maxwell’s equations with variable permeability [1].
In the construction of the solution to the div-curl system besides of the components operators of the classical Teodorescu transform [1] are involved other layer potential operators related with classical Dirichlet problems [3].
[1] B. B. Delgado, R. M. Porter, “General solution of the inhomogeneous div– curl system and consequences,” Advances in Applied Clifford Algebras (2017) 3015 – 3037.
[2] B. B. Delgado, R. M. Porter, “Hilbert transform for the three-dimensional Vekua equation,” https://arxiv.org/pdf/1803.03293.pdf (2018).
[3] C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, Number 83, American Mathematical Society, Rhode Island (1994).
[4] B. B. Delgado, R. M. Porter, “General solution of the inhomogeneous div– curl system and consequences,” Advances in Applied Clifford Algebras (2017) 3015 – 3037.
[5] K. Gürlebeck, K. Habetha, W. Sprößig, Holomorphic Functions in the Plane and n-dimensional Space. Birkhäuser, Basel (2008).
Карякин Михаил Игоревич